Studi Awal Penurunan Ph Pada Tanaman Vetiver Untuk Fitomining Dan Fitoremediasi Dari Limbah Red Mud

Authors

  • Fiqna Chefana Aulya Universitas Gadjah Mada Author
  • Prof. Ir. Panut Mulyono, M.Eng., D.Eng., IPU., ASEAN.Eng. Author
  • Ir. Agus Prasetya, M.Eng.Sc., Ph.D. Author

DOI:

https://doi.org/10.69836/ncrcs-sinesia.v1i2.83

Keywords:

Red mud, Vetiver, Phytomining, Phytoremediation, Humic acid, Phosphoric acid, RSM.

Abstract

Red mud merupakan residu dari proses Bayer dengan pH sangat tinggi (11–13) yang berpotensi menimbulkan pencemaran lingkungan. Meskipun demikian, red mud mengandung logam bernilai seperti Fe, Ti, dan unsur tanah jarang (REE), sehingga berpeluang dimanfaatkan melalui fitomining. Penelitian ini mengkaji kemampuan tanaman Vetiver (Chrysopogon zizanioides) dalam mengakumulasi logam serta memperbaiki kualitas media melalui fitoremediasi. Metodologi Response Surface Methodology (RSM) menggunakan Design Expert diterapkan untuk menganalisis pengaruh asam fosfat, asam humat, dan pupuk NPK Mutiara 16-16-16 terhadap respons utama yaitu penurunan pH red mud. Berdasarkan hasil percobaan, penurunan pH berlangsung efektif hingga berada pada rentang 6,5 – 6,8, sehingga kondisi media lebih mendukung pertumbuhan akar dan ketersediaan logam bagi tanaman. Vetiver menunjukkan pertumbuhan stabil pada media yang telah diberi perlakuan dan mampu mengakumulasi logam terutama pada bagian akar. Oleh karena itu, sistem fitoremediasi–fitomining berbasis Vetiver berpotensi diterapkan sebagai solusi pengelolaan red mud yang lebih ramah lingkungan.

References

Barbosa, L. F., de Souza, V. F., & Almeida, M. F. (2020). Performance of Vetiver under soil metal stress. Chemosphere, 246, 125–139. https://doi.org/10.1016/j.chemosphere.2019.125139

Birk, T., Wotruba, H., & Friedrich, B. (2022). Critical metals in red mud: Recovery and sustainability. Minerals, 12(3), 311–326. https://doi.org/10.3390/min12030311

Borra, C. R., Blanpain, B., Pontikes, Y., Binnemans, K., & Van Gerven, T. (2016). Recovery of rare earths from bauxite residue. Minerals Engineering, 76, 20–27. https://doi.org/10.1016/j.mineng.2015.11.008

Çolak, M., Yılmaz, T., & Güneş, E. (2022). Phosphoric acid application for red mud neutralization and soil improvement. Journal of Environmental Chemical Engineering, 10(5), 108356. https://doi.org/10.1016/j.jece.2022.108356

Gravand, F., & Hejazi, S. A. (2022). Vetiver morphological changes in phytoremediation of contaminated soil. International Journal of Environmental Chemistry, 6(1), 7–27. https://doi.org/10.11648/j.ijec.20220601.12

Li, Y., Wang, S., & Zhang, X. (2023). Humic acids for improving soil structure and metal mobility in contaminated soils. Environmental Technology & Innovation, 32, 103239. https://doi.org/10.1016/j.eti.2023.103239

Liu, W. J., Chen, B., & Jiang, W. (2020). Environmental impacts of red mud disposal and reuse potential. Environmental Pollution, 266, 115–137. https://doi.org/10.1016/j.envpol.2020.115137

Maiti, S. K., Nema, A., & Pandey, V. C. (2021). Rhizosphere mechanisms of vetiver in heavy metal uptake and detoxification. Environmental Advances, 5, 100092. https://doi.org/10.1016/j.envadv.2021.100092

Montgomery, D. C. (2019). Design and Analysis of Experiments (10th ed.). Wiley. https://www.wiley.com/en-us/Design+and+Analysis+of+Experiments%2C+10th+Edition-p-9781119492443

Paramguru, R. K., Rath, P. C., & Misra, V. N. (2005). Trends in red mud utilization: A review. Minerals & Metallurgical Processing, 22(3), 1–10. https://doi.org/10.1007/s42461-005-0003-7

Peiravi, M., Khosravi, R., & Moore, F. (2017). Influence of pH on metal uptake in phytoremediation. Chemosphere, 186, 70–78. https://doi.org/10.1016/j.chemosphere.2017.07.119

Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2022). Metal mobility under varying pH: Phytoremediation implications. Science of the Total Environment, 831, 154–164. https://doi.org/10.1016/j.scitotenv.2022.154164

Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: A review of mechanisms and prospects. Minerals Engineering, 22(12), 1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001

Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). Phytoremediation of heavy metals: A review. International Journal of Chemical Engineering, 2011, 939161. https://doi.org/10.1155/2011/939161

Wang, Q., Chen, D., & Liu, J. (2022). Chemical stabilization and reuse of bauxite residue. Journal of Cleaner Production, 352, 131467. https://doi.org/10.1016/j.jclepro.2022.131467

Yang, J., Li, P., & Chen, X. (2025). Hazards and de-alkalization strategies of red mud. Minerals, 15(4), 343. https://doi.org/10.3390/min15040343

Yulikasari, A., Harahap, N., & Pratiwi, D. (2024). Integration of phytoremediation technologies for red mud management. Ecotoxicology and Environmental Safety, 263, 116124. https://doi.org/10.1016/j.ecoenv.2023.116124

Zhu, Y., Li, S., & Zhang, Z. (2023). Recovery of valuable metals from red mud through green metallurgy. Resources, Conservation & Recycling, 189, 106709. https://doi.org/10.1016/j.resconrec.2022.106709

Downloads

Published

2025-11-30

Data Availability Statement

The research data are not publicly available but can be provided upon reasonable request to the authors

How to Cite

Studi Awal Penurunan Ph Pada Tanaman Vetiver Untuk Fitomining Dan Fitoremediasi Dari Limbah Red Mud. (2025). Proceedings National Conference Sinesia, 1(2), 577-587. https://doi.org/10.69836/ncrcs-sinesia.v1i2.83