Pengaruh Variasi Kadar Bentonit terhadap Sifat Fisik Biochar Pelet sebagai Bahan Penyangga Pupuk
DOI:
https://doi.org/10.69836/ncrcs-sinesia.v1i2.100Keywords:
Biochar pelet, Bentonit, Media penyangga pupuk, Sifat fisik, Daya serap airAbstract
Biochar pelet sedang dikembangkan sebagai media penyangga pupuk yang berfungsi mengurangi kehilangan unsur hara saat penyiraman, dengan cara melepaskannya secara bertahap sesuai kebutuhan tanaman. Pada penelitian ini, pelet dibuat dari biochar hasil pirolisis tempurung kelapa, menggunakan tapioka sebagai perekat alami dan bentonit sebagai bahan tambahan untuk meningkatkan kekuatan serta kemampuan menahan air. Kandungan bentonit divariasikan antara 5% hingga 30% dari massa biochar. Proses pembuatan dilakukan dengan mencampur bahan hingga merata, kemudian dibentuk menjadi silinder kecil dan dikeringkan pada suhu serta kelembapan yang terkontrol. Pelet yang dihasilkan diuji melalui beberapa pengujian fisik, antara lain uji ketahanan jatuh, perendaman dalam air, dan uji penyerapan air, untuk menilai kestabilan struktur serta interaksinya dengan air. Hasil penelitian menunjukkan bahwa peningkatan kadar bentonit umumnya memperkuat struktur pelet dan meningkatkan kemampuan menyerap air. Namun, pada kadar bentonit yang terlalu tinggi, struktur menjadi lebih rapat sehingga ikatan antarpartikel melemah. Komposisi bentonit sebesar 20% memberikan hasil paling optimal, dengan keseimbangan antara kekuatan, ketahanan dalam air, dan kemampuan penyerapan. Secara keseluruhan, biochar pelet dengan penambahan bentonit berpotensi menjadi bahan penyangga pupuk yang stabil, ramah lingkungan, dan efektif untuk pelepasan hara secara bertahap di tanah pertanian.
References
Abu-Salem, Z., Baker, M. B., Abendeh, R., & Qasem, A. (2024). Utilization of natural Jordanian bentonite clay in hydraulic cement mortars. Innovative Infrastructure Solutions, 9, 230–241. https://link.springer.com/article/10.1007/s41062-024-01049-4
Andrenelli, M. C., Maienza, A., Genesio, L., Vignozzi, N., et al. (2016). Field application of pelletized biochar: Short-term effect on hydrological properties of a silty clay loam soil. Agricultural Water Management, 163, 190–196. https://www.sciencedirect.com/science/article/pii/S0378377415301098
Firouzi, A. F., Biria, M., Moezzi, A., & Rahnama, A. (2024). Effect of Conocarpus biochar on physical and mechanical properties of calcareous soil under corn cultivation. Water and Soil Management and Modeling, 4(2), 89–98.
https://www.sciencedirect.com/journal/water-and-soil-management-and-modeling
Guo, Y., Sang, Z., Zhang, R., & Tan, L. (2025). Coupling of soil biochar carbon sequestration and treatment of organically polluted soil. Water, Air, and Soil Pollution, 236, 115.
https://link.springer.com/article/10.1007/s11270-025-06624-1
Juntahum, S., Klinsukon, C., Senawong, K., et al. (2025). Assessing the potential for producing compost pellets with cassava by-product binders and Trichoderma. Case Studies in Chemical and Environmental Engineering, 13, 101462.
https://www.sciencedirect.com/science/article/pii/S2666765725000150
Kurniawan, S., Corre, M. D., Matson, A. L., & Veldkamp, E. (2018). Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency. Biogeosciences, 15, 5131–5145.
https://bg.copernicus.org/articles/15/5131/2018/
Lan, Y., Meng, J., Han, X.-R., & Chen, W.-F. (2024). Advances in research on biochar-based products and their effects on soil fertility improvement.
Journal of Plant Nutrition and Fertilizers, 30(2), 267–280.
Lim, S. C., Gomes, C., & Ab Kadir, M. Z. A. (2013). Characterizing bentonite with chemical, physical and electrical perspectives for improvement of electrical grounding systems. International Journal of Electrochemical Science, 8, 11429–11443.
https://www.electrochemsci.org/papers/vol8/81311429.pdf
Ma, Z., Zheng, D., Liang, B., & Li, H. (2025). Effect of vermiculite-modified biochar on carbon sequestration potential and mercury adsorption stability. Biomass Conversion and Biorefinery.
https://link.springer.com/article/10.1007/s13399-024-03875-z
Muhammad, N., Hussain, M., Ullah, W., et al. (2018). Biochar for sustainable soil and environment: A comprehensive review. Arabian Journal of Geosciences, 11, 705.
https://link.springer.com/article/10.1007/s12517-018-3965-7
Nikitchenko, T. V., Timofeeva, A. S., Fedina, V. V., & Denisova, E. E. (2025). Study of the water absorption of bentonites in dynamics. Steel in Translation, 55(4), 299–307.
https://link.springer.com/journal/11988
Silva, R. P., Santanna, V. C., Melo, D. M. A., & Medeiros, A. L. (2014). Rheological study of calcium surface-modified bentonite in an oil-based drilling fluid. WIT Transactions on Ecology and the Environment, 186, 53–64.
https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/186/32093
Subaedah, S., Ralle, A., & Sabahannur, S. (2019). Phosphate fertilization efficiency improvement using organic fertilizer under dryland conditions. Pakistan Journal of Biological Sciences, 22(6), 295–301.
Widowati, L. R., de Neve, S., Sukristiyonubowo, et al. (2011). Nitrogen balances and nitrogen use efficiency of intensive vegetable rotations in tropical Andisols. Nutrient Cycling in Agroecosystems, 91, 131–142.
https://link.springer.com/article/10.1007/s10705-011-9448-4
Zhao, F., Zou, G., Shan, Y., et al. (2019). Coconut shell derived biochar to enhance water spinach growth and decrease nitrogen loss under tropical conditions. Scientific Reports, 9, 19763.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alghifari Rizqi Hastami Muhammad (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
